Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Feed Sci Technol ; 253: 125-134, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31293291

RESUMO

Selenium (Se) is a non-metallic trace element essential for normal cellular function, which has been linked with reduced risk of cancer, cardiovascular disease, cognitive decline and thyroid disease in humans. Se deficiency in livestock is associated with white muscle disease, retained placenta, ill-thrift and mastitis. Where Se status or bioavailability from the soil for plants is poor, livestock rely on supplemental Se in their diets predominantly as either sodium selenite (inorganic form) or selenised-yeast (organic form). As lactic acid bacteria (LAB) have been shown to incorporate Se as either organic or elemental (Nano-Se) there may be potential to use silage inoculant bacteria to improve the Se status of feed to provide the Se requirements of livestock. We screened twenty-seven LAB in MRS broth in the presence of sodium selenite for growth and uptake of Se as organic (selenocysteine and selenomethionine), inorganic (selenite and selenate) or/and Nano-Se, with the aim to identify potential candidates for a mini-silo study. Sodium selenite addition into the growth medium of LAB reduced growth rates but also resulted in the conversion of the inorganic sodium selenite into predominately Nano-Se and small quantities of organic-Se. Based on a rank analysis of growth and ability to take up (total Se content) and convert inorganic Se (Nano and organic Se content), three LAB were selected for further investigation as silage inoculants: L. brevis DSMZ (A), L. plantarum LF1 (B), and L. plantarum SSL MC15 (C). Each LAB was used as an inoculant within a grass mini-silo trial, either cultured in the presence of sodium selenite before inoculation or sodium selenite added to the inoculum at inoculation versus controls with no Se. The addition of sodium selenite either into the growth media of LAB or applied at inoculation of grass silage did not interfere with the ability of the LAB to act as a silage inoculant with no difference in silage fermentation characteristic between LAB with no Se added. The addition of sodium selenite either to the LAB growth medium or at inoculation resulted in the conversion of sodium selenite into Nano-Se and organic-Se (Nano-Se, ca. 103 higher than organic), as previously shown in the screening trial. There was no difference between the three LAB for incorporation of Se or in silage quality, indicating the potential to develop silage inoculants to increase the bioavailable form of Se (elemental and organic) to livestock through conversion of inorganic forms during ensiling.

2.
Vet Anim Sci ; 1-2: 29-35, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28203647

RESUMO

Layers diets typically contain 15-20% soya due to its high crude protein content (ca. 36%). Reliance on soya for protein can result in large increases in cost of feed due to the law of supply and demand as a global commodity. Lupin grains have high protein content (35-40%) but previous experience with white lupins has shown toxic effects in poultry due to high levels alkaloids and poor performance due to anti-nutritional Non-starch polysaccharides (NSP). Here blue lupins either processed or whole were trialled for their potential as a protein source. Point of lay chickens (64) at 16 weeks of age were weighed and allocated to 16 coops of four hens. Coops, as the experimental unit, were randomly allocated to four treatments: layers mash with soya (Control); or layers mash with 150 g of lupin/kg diet with the lupin either: whole (Whole); dehulled (Dehulled) or dehulled + a solid state fermentation enzyme extract (SSF; 150 g/tonne DM). All diets were ground and formulated to be balanced for energy, crude protein and essential amino acids using NIRS. No difference in growth rate, final hen weight, DM and water intake, eggs per day, mean egg weight, yellowness of yolk or chroma was found between treatments. There was a trend (P<0.1) for the SSF treatment to produce less heavy shells and a significant effect for the lupin treatments to have redder yolks (P<0.001). Fecal DM and bacterial counts were not different and there was no sign of enteritis or intestinal tissue hyperplasia from hen autopsies. Inclusion of blue lupins in the diet of laying hens at a rate of 150 g/kg DM resulted in no adverse effects in production or hen health and could be used as part of a balanced ration with inclusion of NSP degrading enzymes to reduce reliance on soya protein.

3.
PLoS One ; 9(9): e107861, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259617

RESUMO

Ruminant livestock turn forages and poor-quality feeds into human edible products, but enteric methane (CH4) emissions from ruminants are a significant contributor to greenhouse gases (GHGs) and hence to climate change. Despite the predominance of pasture-based beef production systems in many parts of Europe there are little data available regarding enteric CH4 emissions from free-ranging grazing cattle. It is possible that differences in physiology or behaviour could influence comparative emissions intensities for traditional and modern breed types depending on the nutritional characteristics of the herbage grazed. This study investigated the role of breed type in influencing CH4 emissions from growing beef steers managed on contrasting grasslands typical of intensive (lowland) and extensive (upland) production systems. Using the SF6 dilution technique CH4 emissions were estimated for a modern, fast-growing crossbred (Limousin cross) and a smaller and hardier native breed (Welsh Black) when grazing lowland perennial ryegrass (high nutritional density, low sward heterogeneity) and semi-improved upland pasture (low/medium nutritional density, high sward heterogeneity). Live-weight gain was substantially lower for steers on the upland system compared to the lowland system (0.31 vs. 1.04 kg d-1; s.e.d. = 0.085 kg d-1; P<0.001), leading to significant differences in estimated dry matter intakes (8.0 vs. 11.1 kg DM d-1 for upland and lowland respectively; s.e.d. = 0.68 kg DM d-1; P<0.001). While emissions per unit feed intake were similar for the lowland and upland systems, CH4 emissions per unit of live-weight gain (LWG) were substantially higher when the steers grazed the poorer quality hill pasture (760 vs 214 g kg-1 LWG; s.e.d. = 133.5 g kg-1 LWG; P<0.001). Overall any effects of breed type were relatively small relative to the combined influence of pasture type and location.


Assuntos
Ração Animal , Cruzamento , Pradaria , Metano/análise , Animais , Bovinos , Clima , Efeito Estufa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...